博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
【AtCoder】ARC103
阅读量:5337 次
发布时间:2019-06-15

本文共 7802 字,大约阅读时间需要 26 分钟。

C -

为了防止一些多余的判断,我选择直接记录每个数的个数,然后枚举第一个数,找第一个数之外第二个数改变最少的情况下应该选什么

代码

#include 
#define fi first#define se second#define pii pair
#define mp make_pair#define pb push_back#define enter putchar('\n')#define space putchar(' ')//#define ivorysi#define MAXN 100005typedef long long int64;using namespace std;template
void read(T &res) { res = 0;char c = getchar();T f = 1; while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 + c - '0'; c = getchar(); } res *= f;}template
void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10);}int N,a[MAXN];int L[MAXN],tot,ans,cnt1[MAXN],cnt2[MAXN],pre[MAXN],suf[MAXN];void Solve() { read(N); for(int i = 1 ; i <= N ; ++i) read(a[i]); for(int i = 1 ; i <= N ; i += 2) { cnt1[a[i]]++; } for(int i = 2 ; i <= N ; i += 2) { cnt2[a[i]]++; } for(int i = 1 ; i <= 100000 ; ++i) { pre[i] = max(pre[i - 1],cnt2[i]); } for(int i = 100000 ; i >= 1 ; --i) { suf[i] = max(suf[i + 1],cnt2[i]); } ans = N; for(int i = 1 ; i <= 100000 ; ++i) { ans = min(ans,N / 2 - cnt1[i] + N / 2 - max(pre[i - 1],suf[i + 1])); } out(ans);enter;}int main() {#ifdef ivorysi freopen("f1.in","r",stdin);#endif Solve(); return 0;}

D - Robot Arms

103真是构造题大荟萃

如果所有的\(X_i + Y_i\)奇偶性不同,那么显然不行

那么我们考虑一下所有\(X_i + Y_i\)为奇数的情况

我们找一个集合\({1,2,4,8...2^k}\)他们的总和大于\(|X_i| + |Y_i|\)的最大值

我们证明一下\({1,2,4,8..2^k}\)这个集合可以达到所有\(|X_i| + |Y_i| <= 2^{k +1} - 1\)的所有\(X_i +Y_i\)和为奇数的点

首先集合中只有\(1\)的时候,我们可以达到

集合中有\({1,2}\)的时候,我们通过向上下左右移动\(2\),是可以达到距离原点距离为\(1\)的位置的

这样递归证明,最后就是对的

代码

#include 
#define fi first#define se second#define pii pair
#define mp make_pair#define pb push_back#define enter putchar('\n')#define space putchar(' ')//#define ivorysi#define MAXN 100005typedef long long int64;using namespace std;template
void read(T &res) { res = 0;char c = getchar();T f = 1; while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 + c - '0'; c = getchar(); } res *= f;}template
void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10);}int N;int M = 0;int64 op[35],sum,X[1005],Y[1005];int64 dx[] = {1,0,-1,0},dy[] = {0,-1,0,1};char s[1005][45];const char *dir = "RDLU";void Solve() { read(N); for(int i = 1 ; i <= N ; ++i) { read(X[i]);read(Y[i]); } for(int i = 2 ; i <= N ; ++i) { if((abs(X[i]) + abs(Y[i])) % 2 != (abs(X[1]) + abs(Y[1])) % 2) { puts("-1");return ; } } bool flag = 0; flag = ((abs(X[1]) + abs(Y[1])) % 2 == 0); if(flag) {op[++M] = 1;} for(int i = 30 ; i >= 0 ; --i) {op[++M] = 1 << i;sum += op[M];} pii st = mp(0,0); if(flag) st = mp(1,0); for(int i = 1 ; i <= N ; ++i) { if(flag) s[i][1] = 'R'; pii p = st; int64 tmp = sum; for(int j = flag ? 2 : 1 ; j <= M ; ++j) { for(int k = 0 ; k <= 3 ; ++k) { int64 tx = p.fi + dx[k] * op[j],ty = p.se + dy[k] * op[j]; int64 a = abs(tx - X[i]) + abs(ty - Y[i]); if(a <= tmp - op[j]) { tmp -= op[j]; s[i][j] = dir[k]; p = mp(tx,ty); break; } } } } out(M);enter; for(int i = 1 ; i <= M ; ++i) { out(op[i]);space; } enter; for(int i = 1 ; i <= N ; ++i) { for(int j = 1 ; j <= M ; ++j) { putchar(s[i][j]); } enter; }}int main() {#ifdef ivorysi freopen("f1.in","r",stdin);#endif Solve();}

E - Tr/ee

很容易发现1必须合法

我们想要某个大小的树可以被割出来

用一种节约节点的方式,可以用上一个可以拼出来的树,接上一个根,不足的用大小为1的叶子作为补充

然后只要拼到n / 2,再直接加叶子拼到n即可

代码

#include 
#define fi first#define se second#define pii pair
#define mp make_pair#define pb push_back#define enter putchar('\n')#define space putchar(' ')//#define ivorysi#define MAXN 100005typedef long long int64;using namespace std;template
void read(T &res) { res = 0;char c = getchar();T f = 1; while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 + c - '0'; c = getchar(); } res *= f;}template
void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10);}int N,dp[100005];char s[100005];void add(int u,int v) { out(u);space;out(v);enter;}void Solve() { scanf("%s",s + 1); N = strlen(s + 1); for(int i = 1 ; i <= N ; ++i) dp[i] = s[i] - '0'; if(!dp[1] || dp[N]) {puts("-1");return;} for(int i = 2 ; i <= N - 1 ; ++i) { if(dp[i]) { if(!dp[N - i]) {puts("-1");return;} } } int p = 1,rt = 1; for(int i = 2 ; i <= N / 2 ; ++i) { if(dp[i]) { add(rt,++p);rt = p; while(p < i) {add(rt,++p);} } } add(rt,++p);rt = p; while(p < N) {add(rt,++p);}}int main() {#ifdef ivorysi freopen("f1.in","r",stdin);#endif Solve();}

F - Distance Sums

Di最大的点一定是一个叶子,我们找到Di - (n - 2)的点是连向它的点

然后以此类推,我们可以一边从大到小枚举D来算父亲边,同时维护每个点的子树大小

但是这必要但不充分,我们可以构造这棵树出来时候重新算一遍D值来检验

#include 
#define fi first#define se second#define pii pair
#define mp make_pair#define pb push_back#define enter putchar('\n')#define space putchar(' ')//#define ivorysi#define MAXN 100005typedef long long int64;using namespace std;template
void read(T &res) { res = 0;char c = getchar();T f = 1; while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 + c - '0'; c = getchar(); } res *= f;}template
void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10);}int N;int64 D[MAXN],L[MAXN],dep[MAXN],C[MAXN];int id[MAXN],s[MAXN],t[MAXN],tot,siz[MAXN]; struct node { int to,next;}E[MAXN * 2];int head[MAXN],sumE;void add(int u,int v) { E[++sumE].to = v; E[sumE].next = head[u]; head[u] = sumE;}bool cmp(int a,int b) { return D[a] < D[b];}void dfs(int u,int fa) { siz[u] = 1; for(int i = head[u] ; i ; i = E[i].next) { int v = E[i].to; if(v != fa){ dep[v] = dep[u] + 1; dfs(v,u); siz[u] += siz[v]; } }}bool dfs1(int u,int fa) { if(C[u] != D[u]) return false; for(int i = head[u] ; i ; i = E[i].next) { int v = E[i].to; if(v != fa) { C[v] = C[u] - siz[v] + N - siz[v]; if(!dfs1(v,u)) return false; } } return true;}void Solve() { read(N); for(int i = 1 ; i <= N ; ++i) { read(D[i]);id[i] = i;siz[i] = 1; } sort(id + 1,id + N + 1,cmp); for(int i = 1 ; i <= N ; ++i) L[i] = D[id[i]]; for(int i = N ; i > 1 ; --i) { s[++tot] = id[i]; int p = lower_bound(L + 1,L + i,L[i] + 2 * siz[s[tot]] - N) - L; if(L[p] != L[i] + 2 * siz[s[tot]] - N) {puts("-1");return;} t[tot] = id[p]; siz[id[p]] += siz[id[i]]; } for(int i = 1 ; i <= tot ; ++i) {add(s[i],t[i]);add(t[i],s[i]);} dfs(1,0); for(int i = 1 ; i <= N ; ++i) C[1] += dep[i]; if(!dfs1(1,0)) {puts("-1");return;} for(int i = 1 ; i <= tot ; ++i) { out(s[i]);space;out(t[i]);enter; }}int main() {#ifdef ivorysi freopen("f1.in","r",stdin);#endif Solve(); return 0;}

转载于:https://www.cnblogs.com/ivorysi/p/9751584.html

你可能感兴趣的文章
.net webService代理类
查看>>
Code Snippet
查看>>
Node.js Express项目搭建
查看>>
zoj 1232 Adventure of Super Mario
查看>>
1201 网页基础--JavaScript(DOM)
查看>>
组合数学 UVa 11538 Chess Queen
查看>>
oracle job
查看>>
Redis常用命令
查看>>
XML学习笔记(二)-- DTD格式规范
查看>>
IOS开发学习笔记026-UITableView的使用
查看>>
[转载]电脑小绝技
查看>>
windos系统定时执行批处理文件(bat文件)
查看>>
thinkphp如何实现伪静态
查看>>
BZOJ 2243: [SDOI2011]染色( 树链剖分 )
查看>>
BZOJ 1925: [Sdoi2010]地精部落( dp )
查看>>
c++中的string常用函数用法总结!
查看>>
界面交互之支付宝生活圈pk微信朋友圈
查看>>
[DLX精确覆盖+打表] hdu 2518 Dominoes
查看>>
SuperMap iServerJava 6R扩展领域开发及压力测试---判断点在那个面内(1)
查看>>
Week03-面向对象入门
查看>>